Abstract

The increasing availability of quantum computers motivates researching their potential capabilities in enhancing the performance of data analysis algorithms. Similarly, as in other research communities, also in Remote Sensing (RS) it is not yet defined how its applications can benefit from the usage of quantum computing. This paper proposes a formulation of the Support Vector Regression (SVR) algorithm that can be executed by D-Wave quantum computers. Specifically, the SVR is mapped to a Quadratic Unconstrained Binary Optimization (QUBO) problem that is solved with Quantum Annealing (QA). The algorithm is tested on two different types of computing environments offered by D-Wave: The Advantage system, which directly embeds the problem into the Quantum Processing Unit (QPU), and a Hybrid solver that employs both classical and quantum computing resources. For the evaluation, we considered a biophysical variable estimation problem with RS data. The experimental results show that the proposed quantum SVR implementation can achieve comparable or in some cases better results than the classical implementation. This work is one of the first attempts to provide insight into how QA could be exploited and integrated in future RS workflows based on Machine Learning (ML) algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.