Abstract
We have made the first direct measurement of the quantum susceptance that arises from the nondissipative part of quasiparticle tunneling in a superconductor-insulator-superconductor tunnel junction. The junction is coupled to an antenna and a superconducting microstrip stub to form a resonator; the resonant frequency is determined from the response of the junction to broadband radiation from a Fourier-transform spectrometer. A 19% shift of the resonant frequency, from 73 to 87 GHz, is observed, which arises from the change of the quantum susceptance of the junction with dc bias voltage. This shift is in excellent agreement with calculations based on the Werthamer-Tucker theory, which includes the quantum susceptance. We also demonstrate that it is essential to include the quantum susceptance in our theoretical computation to explain the photon-assisted-tunneling steps, which have negative dynamic conductance. Such steps are observed when the junction is pumped at slightly below the resonant frequency of the capacitor and the stub. The quantum susceptance should exist in all tunnel devices whose nonlinear I-V characteristics are due to elastic tunneling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.