Abstract
We present a a plasmonic route to superradiant and subradiant effects excited by a pair of two-level emitters embedded inside plasmonic nanochannels. These channels can provide an effective epsilon-near-zero (ENZ) response in their cut-off frequency and Fabry-Perot (FP) resonances in higher frequencies. The plasmonic resonant modes are found to enhance the constructive (superradiance) or destructive (subradiance) interference between two different quantum emitters located inside the channels. The separation distance between neighboring emitters and their emission wavelength can be changed to dynamically control the collective emission properties of the plasmonic system. It is envisioned that the dynamic modification between superradiant and subradiant modes will find applications to future quantum communication and computing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.