Abstract

Quantum strategies are introduced into evolutionary games. The agents using quantum strategies are regarded as invaders, whose fraction generally is 1% of a population, in contrast to the 50% of the population that are defectors. In this paper, the evolution of strategies on networks is investigated in a defector-dominated population, when three networks (square lattice, Newman–Watts small-world network, and scale-free network) are constructed and three games (Prisoners’ Dilemma, Snowdrift, and Stag-Hunt) are employed. As far as these three games are concerned, the results show that quantum strategies can always invade the population successfully. Comparing the three networks, we find that the square lattice is most easily invaded by agents that adopt quantum strategies. However, a scale-free network can be invaded by agents adopting quantum strategies only if a hub is occupied by an agent with a quantum strategy or if the fraction of agents with quantum strategies in the population is significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call