Abstract

Abstract Processes at the nanoscale happen far away from the thermodynamic limit, far from equilibrium and are dominated by fluctuations and, perhaps, even quantum effects. This book establishes a consistent thermodynamic framework for such processes by combining tools from non-equilibrium statistical mechanics and the theory of open quantum systems. The book is accessible for graduate students and of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability. It puts most emphasis on the microscopic derivation and understanding of key principles and concepts as well as their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon and time-reversal symmetry, among other topics. Furthermore, the book treats a few applications in detail to illustrate the general theory and its potential for practical applications. These are single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser and related set-ups in quantum optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call