Abstract

In stochastic resonance, the combination of a weak signal with noise leads to its amplification and optimization1. This phenomenon has been observed in several systems in contexts ranging from palaeoclimatology, biology, medicine, sociology and economics to physics1–9. In all these cases, the systems were either operating in the presence of thermal noise or were exposed to external classical noise sources. For quantum-mechanical systems, it has been theoretically predicted that intrinsic fluctuations lead to stochastic resonance as well, a phenomenon referred to as quantum stochastic resonance1,10,11, but this has not been reported experimentally so far. Here we demonstrate tunnelling-controlled quantum stochastic resonance in the a.c.-driven charging and discharging of single electrons on a quantum dot. By analysing the counting statistics12–16, we demonstrate that synchronization between the sequential tunnelling processes and a periodic driving signal passes through an optimum, irrespective of whether the external frequency or the internal tunnel coupling is tuned. Quantum stochastic resonance, in which the quantum fluctuation represents the noise needed to amplify an otherwise weak signal, is reported in the charging and discharging of a single-electron quantum dot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.