Abstract
We describe a method to compute thermodynamic quantities in the harmonic approximation for identical bosons and fermions in an external confining field. We use the canonical partition function where only energies and their degeneracies enter. The number of states of given energy and symmetry is found by separating the center-of-mass motion, and by counting the remaining states of given symmetry and excitation energy of the relative motion. The oscillator frequencies that enter the harmonic Hamiltonian can be derived from realistic model parameters, and the method corresponds to an effective interaction approach based on harmonic interactions. To demonstrate the method, we apply it to systems in two dimensions. Numerical calculations are compared to a brute force method, which is considerably more computationally intensive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.