Abstract

The quantum statistical properties of Brillouin scattering of intense laser light are derived including the coupling of Stokes, anti-Stokes and phonon modes, if the anti-Stokes interaction prevails. Making use of the coherent-state technique, the Heisenberg equations of this process are solved neglecting the loss mechanism, and the normal quantum characteristic function and the normal generating function are derived. The time dependences of the photon distribution and its factorial moments are demonstrated if the phonon, Stokes and anti-Stokes modes are initially in a coherent state and periodical anti-bunching of the field is found when the phases of the incident fields fulfil certain phase conditions; the field can also return to the coherent state again.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call