Abstract

In this paper, we carry out a theoretical calculation of quantum state and quantum energy structure in carbon nanotube embedded semiconductor surface. In this theoretical model, the electrons in the carbon nanotube are considered as in a two-dimensional cylindrical surface. Their motion, therefore, can be described by the Dirac equation. We solve the equation and find that the energy levels are quantized and are linearly dependent on the wave vectors along the [Formula: see text]-direction that is along the direction of the nanotube. This type of energy structure may have potential application for fabricating high efficiency solar cell or quantum bit in computer chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.