Abstract

We argue that tangent vectors to classical phase space give rise to quantum states of the corresponding quantum mechanics. This is established for the case of complex, finite-dimensional, compact, classical phase spaces [Formula: see text], by explicitly constructing Hilbert-space vector bundles over [Formula: see text]. We find that these vector bundles split as the direct sum of two holomorphic vector bundles: the holomorphic tangent bundle [Formula: see text], plus a complex line bundle [Formula: see text]. Quantum states (except the vacuum) appear as tangent vectors to [Formula: see text]. The vacuum state appears as the fibrewise generator of [Formula: see text]. Holomorphic line bundles [Formula: see text] are classified by the elements of [Formula: see text], the Picard group of [Formula: see text]. In this way [Formula: see text] appears as the parameter space for nonequivalent vacua. Our analysis is modelled on, but not limited to, the case when [Formula: see text] is complex projective space CPn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call