Abstract

An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons and Grioni [Phys. Rev. B {\bf 82}, 085440 (2010)] describing quantum states at Bi/Si(111) interface with giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis for charge current and induced spin caused by dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response both for current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.