Abstract
Perfect state transfer can be achieved between two marked vertices of graphs like a star graph, a complete graph with self-loops and a complete bipartite graph, and two-dimensional Lattice by means of discrete-time quantum walk. In this paper, we investigate the quality of quantum state transfer between two marked vertices of an unsymmetrical graph like the butterfly network. Our numerical results support the conjecture that the fidelity of state transfer depends on the quantum state to be transferred dynamically. The butterfly network is a typical example studied in networking coding. Therefore, these results can provide a clue to the construction of quantum network coding schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.