Abstract

Quantum information has been drawing a wealth of research in recent years, shedding light on questions at the heart of quantum mechanics, as well as advancing fields such as complexity theory, cryptography, key distribution, and chemistry. These fundamental and applied aspects of quantum information rely on a crucial issue: the ability to characterize a quantum state from measurements, through a process called Quantum State Tomography (QST). However, QST requires a large number of measurements, each derived from a different physical observable corresponding to a different experimental setup. Unfortunately, changing the setup results in unwanted changes to the data, prolongs the measurement and impairs the assumptions that are always made about the stationarity of the noise. Here, we propose to overcome these drawbacks by performing QST with a single observable. A single observable can often be realized by a single setup, thus considerably reducing the experimental effort. In general, measurements of a single observable do not hold enough information to recover the quantum state. We overcome this lack of information by relying on concepts inspired by Compressed Sensing (CS), exploiting the fact that the sought state - in many applications of quantum information - is close to a pure state (and thus has low rank). Additionally, we increase the system dimension by adding an ancilla that couples to information evolving in the system, thereby providing more measurements, enabling the recovery of the original quantum state from a single-observable measurements. We demonstrate our approach on multi-photon states by recovering structured quantum states from a single observable, in a single experimental setup. We further show how this approach can be used to recover quantum states without number-resolving detectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call