Abstract
Recent advances in quantum technology facilitate the realization of information processing using quantum computers at least on the small and intermediate scales of up to several dozens of qubits. We investigate entanglement cost required for one-shot quantum state merging, aiming at quantum state transformation on these scales. In contrast to existing coding algorithms achieving nearly optimal approximate quantum state merging on a large scale, we construct algorithms for exact quantum state merging so that the algorithms are applicable to any given state of an arbitrarily small-dimensional system. In the algorithms, entanglement cost can be reduced depending on a structure of the given state derived from the Koashi-Imoto decomposition. We also provide improved converse bounds for exact quantum state merging achievable for qubits but not necessarily achievable in general. As for approximate quantum state merging, we obtain algorithms and improved converse bounds by applying smoothing to those for exact state merging. Our results are applicable to distributed quantum information processing and multipartite entanglement transformation on small and intermediate scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.