Abstract

Scar eigenstates in a many-body system refers to a small subset of non-thermal finite energy density eigenstates embedded into an otherwise thermal spectrum. This novel non-thermal behaviour has been seen in recent experiments simulating a one-dimensional PXP model with a kinetically-constrained local Hilbert space realized by a chain of Rydberg atoms. We probe these small sets of special eigenstates starting from particular initial states by computing the spread complexity associated to time evolution of the PXP hamiltonian. Since the scar subspace in this model is embedded only loosely, the scar states form a weakly broken representation of the Lie Algebra. We demonstrate why a careful usage of the Forward Scattering Approximation (or similar strategies thereof) is required to extract an appropriate set of Lanczos coefficients in this case as the consequence of this approximate symmetry. This leads to a well defined notion of a closed Krylov subspace and consequently, that of spread complexity. We show how the spread complexity shows approximate revivals starting from both $|\mathbb{Z}_2\rangle$ and $|\mathbb{Z}_3\rangle$ states and how these revivals can be made more accurate by adding optimal perturbations to the bare Hamiltonian. We also investigate the case of the vacuum as the initial state, where revivals can be stabilized using an iterative process of adding few-body terms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call