Abstract

We show that within any quantum stabilizer code there lurks a classical binary linear code with similar error-correcting capabilities, thereby demonstrating new connections between quantum codes and classical codes. Using this result -- which applies to degenerate as well as nondegenerate codes -- previously established necessary conditions for classical linear codes can be easily translated into necessary conditions for quantum stabilizer codes. Examples of specific consequences are: for a quantum channel subject to a delta-fraction of errors, the best asymptotic capacity attainable by any stabilizer code cannot exceed H(1/2 + sqrt(2*delta*(1-2*delta))); and, for the depolarizing channel with fidelity parameter delta, the best asymptotic capacity attainable by any stabilizer code cannot exceed 1-H(delta).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call