Abstract

We investigate the quantum squeezing of slow-light solitons generated in a $\Lambda$-shaped three-level atomic system working under condition of electromagnetically induced transparency (EIT). We show that due to the giant Kerr nonlinearity contributed from the EIT effect, significant quantum squeezing of the slow-light soliton can be realized within a short propagation distance. The results reported here are helpful for understanding the quantum property of slow-light solitons and for realizing light squeezing via EIT in cold atomic gases experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call