Abstract

A Schroedinger picture analysis of time dependent quantum oscillators, in a manner of Guth and Pi, clearly identifies two physical mechanisms for possible decoherence of vacuum fluctuations in the early universe: turning of quantum oscillators upside-down, and rapid squeezing of upside-right oscillators so that certain squeezing factor diverges. In inflationary cosmology the former mechanism explains the stochastic evolution of light inflatons and the classical nature of density perturbations in most of the inflationary models, while the later one is responsible for the classical evolution of relatively heavy fields, with masses in a narrow range above the Hubble parameter: [Formula: see text]. The same method may be applied to the study of the decoherence of quantum fluctuations in any Robertson–Walker cosmology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.