Abstract

Employing large-scale quantum MonteCarlo simulations, we study the extended XXZ model on the kagome lattice. A Z_{2} quantum spin liquid phase with effective even Ising gauge field structure emerges from the delicate balance among three symmetry-breaking phases including stripe solid, staggered solid, and ferromagnet. This Z_{2} spin liquid is stabilized by an extended interaction related to the Rokhsar-Kivelson potential in the quantum dimer model limit. The phase transitions from the staggered solid to a spin liquid or ferromagnet are found to be first order and so is the transition between the stripe solid and ferromagnet. However, the transition between a spin liquid and ferromagnet is found to be continuous and belongs to the 3D XY^{*} universality class associated with the condensation of spinons. The transition between a spin liquid and stripe solid appears to be continuous and associated with the condensation of visons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call