Abstract

The properties of the spin system in the FCC lattice described by the Heisenberg model (s=1/2) with antiferromagnetic interactions between the nearest neighbors were studied. It was shown within the framework of spin-wave theory that long-range antiferromagnetic order was absent because of frustration of exchange coupling and transverse quantum spin fluctuations. The system was in the quantum spin liquid state. A method for describing it within linear second-order theory with self-consistently calculated parameters was suggested. It was proved that the ground spin liquid state was singlet. The thermodynamic properties of the spin liquid in the whole temperature range and the character of spatial spin correlations, which had alternating signs and a finite correlation length, were determined. The theory was constructed based on the method of two-time Green temperature functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.