Abstract

We propose a new type of quantum spin Hall (QSH) insulator in chemically functionalized As (110) and Sb (110) film. According to first-principles calculations, we find that metallic As (110) and Sb (110) films become QSH insulators after being chemically functionalized by hydrogen (H) or halogen (Cl and Br) atoms. The energy gaps of the functionalized films range from 0.121 eV to 0.304 eV, which are sufficiently large for practical applications at room temperature. The energy gaps originate from the spin–orbit coupling (SOC). The energy gap increases linearly with the increase of the SOC strength λ/λ0. The Z2 invariant and the penetration depth of the edge states are also calculated and studied for the functionalized films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.