Abstract

The search for room temperature quantum spin Hall insulators (QSHIs) based on widely available materials and a controlled manufacturing process is one of the major challenges of today's topological physics. We propose a new class of semiconductor systems based on multilayer broken-gap quantum wells, in which the QSHI gap reaches 60 meV and remains insensitive to temperature. Depending on their layer thicknesses and geometry, these novel structures also host a graphene-like phase and a bilayer graphene analog. Our theoretical results significantly extend the application potential of topological materials based on III-V semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.