Abstract

In the present paper we present a detailed analysis of quantum effects in the spin-glass transition as described by a quantum Heisenberg analogue of the Sherrington-Kirkpatrick model. The spin operators are represented in terms of two fermion fields and the problem is reduced to that of n fermion leveis at one site in a random time-dependent field and with an interaction delocalized in time. It is shown that within a Hartree-Fock approximation in a replica-symmetric theory one obtains a mean-field description of the transition with satisfactory zero-temperature properties. The transition is described by two order parameters: the static magnetic susceptibility and the spin-glass order parameter. The saddle-point equations obtained in this work are analogous to those of Sommers for a theory of classical spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.