Abstract

Recently the master constraint programme (MCP) for loop quantum gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single master constraint. The MCP is designed to overcome the complications associated with the non-Lie-algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the master constraint operator was derived. In this paper, we close this gap and prove that the quadratic form is closable and thus stems from a unique self-adjoint master constraint operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.