Abstract

It is an old speculation in physics that, once the gravitational field is successfully quantized, it should serve as the natural regulator of infrared and ultraviolet singularities that plague quantum field theories in a background metric. We demonstrate that at least part of this idea is implemented in a precise sense within the framework of four-dimensional canonical Lorentzian quantum gravity in the continuum. Specifically, we show that the Hamiltonian of the standard model supports a representation in which finite linear combinations of Wilson loop functionals around closed loops, as well as along open lines with fermionic and Higgs field insertions at the end points, are densely defined operators. This Hamiltonian, surprisingly, does not suffer from any singularities, it is completely finite without renormalization. This property is shared by string theory. In contrast to string theory, however, we are dealing with a particular phase of the standard model coupled to gravity which is entirely non-perturbatively defined and second quantized. Of course, to show that the entire theory is finite requires more: one would need to know what the physical observables are, apart from the Hamiltonian constraint, and whether they are also finite. However, with the results given in this paper this question can now be answered, at least in principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.