Abstract
S= 1 2 quantum spin chains and ladders with random exchange coupling are studied by using an effective low-energy field theory and transfer matrix methods. Effects of the nonlocal correlations of exchange couplings are investigated numerically. In particular we calculate localization length of magnons, density of states, correlation functions and multifractal exponents as a function of the correlation length of the exchange couplings. As the correlation length increases, there occurs a “phase transition” and the above quantities exhibit different behaviors in two phases. This suggests that the strong-randomness fixed point of the random spin chains and random-singlet state get unstable by the long-range correlations of the random exchange couplings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.