Abstract

In the Schr{\"o}dinger picture, the state of a quantum system evolves in time and the quantum speed limit describes how fast the state of a quantum system evolves from an initial state to a final state. However, in the Heisenberg picture the observable evolves in time instead of the state vector. Therefore, it is natural to ask how fast an observable evolves in time. This can impose a fundamental bound on the evolution time of the expectation value of quantum mechanical observables. We obtain the quantum speed limit time-bound for observable for closed systems, open quantum systems and arbitrary dynamics. Furthermore, we discuss various applications of these bounds. Our results can have several applications ranging from setting the speed limit for operator growth, correlation growth, quantum thermal machines, quantum control and many body physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call