Abstract

When faced with a quantum-solving problem for partial differential equations, people usually transform such problems into Hamiltonian simulation problems or quantum-solving problems for linear equation systems. In this paper, we propose a third approach to solving partial differential equations that differs from the two approaches. By using the duality quantum algorithm, we construct a quantum-solving algorithm for solving the first-order wave equation, which represents a typical class of partial differential equations. Numerical results of the quantum circuit have high precision consistency with the theoretical d'Alembert solution. Then the routine is applied to the wave equation with either a dissipation or dispersion term. As shown by complexity analysis for all these cases of the wave equation, our algorithm has a quadratic acceleration for each iteration compared to the classical algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.