Abstract
The challenge is to create an efficient quantum algorithm for the bosonic model capable of calculating the Jones polynomials for a knot resulting from interweaving or interlacing n-vertices. This weave is the construction of braid group representations from nineteen-vertex model. We present eigenbases and eigenvalues for lattice generators and their usefulness for the direct computation of Jones polynomials. The calculation shows that the Temperley-Lieb operators can be used for any braid word. Therefore, we propose a quantum sequence using these singular operators as quantum gates operating on the state of n qubits. We show that quantum calculations give the Jones polynomial for achiral knots and links.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.