Abstract
This paper is concerned with the exact evaluation of functional integrals for the partition function Z (free energy F = -β -1 ln Z, β -1 = temperature) for integrable models like the quantum and classical sine-Gordon (s-G) models in 1+1 dimensions.1–12 These models have wide applications in physics and are generic (and important) in that sense. The classical s-G model in 1+1 dimensions $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi$$ (1) (m > 0 is a “mass”) has soliton (kink, anti-kink and breather) solutions. In Refs 1–12 we have reported a general theory of ‘soliton statistical mechanics’ (soliton SM) in which the particle description can be seen in terms of ‘solitons’ and ‘phonons’. The situation concerning the phonons and breather solutions of models like the quantum and classical s-G models has proved unexpected and the latter part of this present report (the §4 on quantum and classical thermodynamic limits) is devoted to this problem and its actual solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.