Abstract

The energy levels and far-infrared spectra of two electrons confined in quantum dots and quantum rings under a magnetic field have been investigated. The size and shape effects of quantum rings on the levels and the spectra are clearly revealed. It is found that the spin oscillation of two electrons in a quantum ring with a magnetic field is caused by the Coulomb interaction. The transitions of two-electron far-infrared spectra are clearly shown from quantum dots to quantum rings. The influence of electron–electron interaction on the energy levels and far-infrared spectra has been discussed. The quantum size effects predict a possibility to observe phenomena related to electron-electron interaction in quantum rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call