Abstract

Using spin-polarized density-functional theory calculations, we investigate the competition between charge and spin orderings in dangling-bond (DB) wires of increasing lengths fabricated on an H-terminated Si(001) surface. For wires containing less than ten DBs as studied in recent experiments, we find antiferromagnetic (AF) ordering to be energetically much more favorable than charge ordering. The energy preference of AF ordering shrinks in an oscillatory way as the wire length increases and preserves its sign even for DB wires of infinite length. The oscillatory behavior can be attributed to quantum size effects as the DB electrons fill discrete quantum levels. The predicted AF ordering is in startling contrast with the prevailing picture of charge ordering due to Jahn-Teller distortion or Peierls instability for wires of finite or infinite lengths, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.