Abstract

Dynamic magnetic properties of spins from Mn ions doped in semiconductor nanocrystals (Cd1−xMnxSe) have been studied using an electron paramagnetic resonance method based on two different crystalline sizes and a series of Mn concentrations. By decreasing the size of the quantum dots, the electron spin-nuclear spin interactions are reduced due to enhanced magnetic interactions between Mn ions. A linewidth analysis was also carried out, showing longer spin relaxation times and supporting the enhancement of spin coherence. We suggest that the enhancement of Mn–Mn interactions results from the quantized electrons which have longer coherence length in quantum dots. Quantum size effects may benefit to control and manipulation of spins in a semiconductor nanocrystalline system in which the magnetic ions are incorporated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.