Abstract

The spinless Ba\~nados-Teiltelboim-Zanelli (BTZ) spacetime is considered in the quantum theory context. Specially, we study the case of negative mass parameter using quantum test particles obeying the Klein-Gordon and Dirac equations. We study if this classical singular spacetime, with a naked singularity at the origin, remains singular when tested with quantum particles. The need of additional information near the origin is confirmed for massive scalar particles and all the possible boundary conditions necessary to turn the spatial portion of the wave operator self-adjoint are found. When tested by massless scalar particles or fermions, the singularity is ``healed'' and no extra boundary condition are needed. Near infinity, no boundary conditions are necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.