Abstract

Mixed ammonia-hydrogen molecule clusters [H2-(NH3)n] have been studied with the aim of exploring the quantitative importance of the H2 quantum motion in defining their structure and energetics. Minimum energy structures have been obtained employing genetic algorithm-based optimization methods in conjunction with accurate pair potentials for NH3-NH3 and H2-NH3. These include both a full 5D potential and a spherically averaged reduced surface mimicking the presence of a para-H2. All the putative global minima for n ≥ 7 are characterized by H2 being adsorbed onto a rhomboidal ammonia tetramer motif formed by two double donor and two double acceptor ammonia molecules. In a few cases, the choice of specific rhombus seems to be directed by the vicinity of an ammonia ad-molecule. Diffusion Monte Carlo simulations on a subset of the species obtained highlighted important quantum effects in defining the H2 surface distribution, often resulting in populating rhomboidal sites different from the global minimum one, and showing a compelling correlation between local geometrical features and the relative stability of surface H2. Clathrate-like species have also been studied and suggested to be metastable over a broad range of conditions if formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call