Abstract
Many-body systems of quantum interacting particles in which time-reversal symmetry is broken give rise to a variety of rich collective behaviors and are, therefore, a major target of research in modern physics. Quantum simulators can potentially be used to explore and understand such systems, which are often beyond the computational reach of classical simulation. Of these, platforms with universal quantum control can experimentally access a wide range of physical properties. However, simultaneously achieving strong programmable interactions, strong time-reversal symmetry breaking, and high-fidelity quantum control in a scalable manner is challenging. Here, we realize quantum simulations of interacting, time-reversal-broken quantum systems in a universal trapped-ion quantum processor. Using a recently proposed, scalable scheme, we implement time-reversal-breaking synthetic gauge fields, shown for the first time in a trapped-ion chain, along with unique coupling geometries, potentially extendable to simulation of multidimensional systems. Our high-fidelity single-site resolution in control and measurement, along with highly programmable interactions, allow us to perform full state tomography of a ground state showcasing persistent current and to observe dynamics of a time-reversal-broken system with nontrivial interactions. Our results open a path toward simulation of time-reversal-broken many-body systems with a wide range of features and coupling geometries.4 MoreReceived 4 July 2022Accepted 4 April 2023DOI:https://doi.org/10.1103/PhysRevX.13.021021Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum simulationQuantum verificationPhysical SystemsTrapped ionsAtomic, Molecular & OpticalQuantum Information
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.