Abstract

We review recent theoretical developments on the stabilization of strongly correlated quantum fluids of light in driven-dissipative photonic devices through novel non-Markovian reservoir engineering techniques. This approach allows to compensate losses and refill selectively the photonic population so to sustain a desired steady-state. It relies in particular on the use of a frequency-dependent incoherent pump which can be implemented, e.g., via embedded two-level systems maintained at a strong inversion of population. As specific applications of these methods, we discuss the generation of Mott Insulator (MI) and Fractional Quantum Hall (FQH) states of light. As a first step, we present the case of a narrowband emission spectrum and show how this allows for the stabilization of MI and FQH states under the condition that the photonic states are relatively flat in energy. As soon as the photonic bandbwidth becomes comparable to the emission linewidth, important non-equilibrium signatures and entropy generation appear. As a second step, we review a more advanced configuration based on reservoirs with a broadband frequency distribution, and we highlight the potential of this configuration for the quantum simulation of equilibrium quantum phases at zero temperature with tunable chemical potential. As a proof of principle we establish the applicability of our scheme to the Bose-Hubbard model by confirming the presence of a perfect agreement with the ground-state predictions both in the Mott Insulating and superfluid regions, and more generally in all parts of the parameter space. Future prospects towards the quantum simulation of more complex configurations are finally outlined, along with a discussion of our scheme as a concrete realization of quantum annealing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call