Abstract

We present quantum algorithms for electromagnetic fields governed by Maxwell's equations. The algorithms are based on the Schrödingerisation approach, which transforms any linear PDEs and ODEs with non-unitary dynamics into a system evolving under unitary dynamics, via a warped phase transformation that maps the equation into one higher dimension. In this paper, our quantum algorithms are based on either a direct approximation of Maxwell's equations combined with Yee's algorithm, or a matrix representation in terms of Riemann-Silberstein vectors combined with a spectral approach and an upwind scheme. We implement these algorithms with physical boundary conditions, including perfect conductor and impedance boundaries. We also solve Maxwell's equations for a linear inhomogeneous medium, specifically the interface problem. Several numerical experiments are performed to demonstrate the validity of this approach. In addition, instead of qubits, the quantum algorithms can also be formulated in the continuous variable quantum framework, which allows the quantum simulation of Maxwell's equations in analog quantum simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.