Abstract

We present a theoretical scheme to simulate quantum field theory in a discrete curved spacetime based on the Bose–Hubbard model describing a Bose–Einstein condensate trapped inside an optical lattice. Using the Bose–Hubbard Hamiltonian, we first introduce a hydrodynamic presentation of the system evolution in discrete space. We then show that the phase (density) fluctuations of the trapped bosons inside an optical lattice in the superfluid (Mott insulator) state obey the Klein–Gordon equation for a massless scalar field propagating in a discrete curved spacetime. We derive the effective metrics associated with the superfluid and Mott-insulator phases and, in particular, we find that in the superfluid phase the metric exhibits a singularity which can be considered as the manifestation of an analog acoustic black hole. The proposed approach is found to provide a suitable platform for quantum simulation of various spacetime metrics through adjusting the system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.