Abstract

An extended version of the torsional path integral Monte Carlo (TPIMC) method is presented and shown to be useful for studying the conformation of flexible molecules in solvated clusters. The new technique is applied to the hydrated clusters of the 2-amino-1-phenyl-ethanol (APE) molecule. APE + nH2O clusters with n = 0-4 are studied at 100 and 300 K using both classical and quantum simulations. Only at the lower temperature is the hydration number n found to impact the conformational distribution of the APE molecule. This is shown to be a result of the temperature-dependent balance between the internal energy and entropy contributions to the relative conformer free energies. Furthermore, at 100 K, large quantum effects are observed in the calculated conformer populations. A particularly large quantum shift of 30% of the total population is calculated for the APE + 2H2O cluster, which is explained in terms of the relative zero point energy of the lowest-energy hydrated structures for this cluster. Finally, qualitative agreement is found between the reported calculations and recent spectroscopy experiments on the hydrated clusters of APE, including an entropically driven preference for the formation of AG-type hydrated structures and the formation of a water "droplet" in the APE + 4H2O cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.