Abstract

We investigate how quantum signatures can emerge in a single atom heat engine consisting of an atom confined in a tapered trap and subjected to hot and cold thermal reservoirs. A similar system was realized experimentally in Science 352, 325 (2016)SCIEAS0036-807510.1126/science.aad6320. We model such a system using a quadratic optomechanical model and identify an effective Otto cycle in the system’s dynamics. We compare the engine’s performance in quantum and classical regimes by evaluating the power dissipated. We find that lowering the temperature is insufficient to make the single atom engine in Science 352, 325 (2016)SCIEAS0036-807510.1126/science.aad6320 a genuine quantum-enhanced heat engine. We show that it is necessary to make the trap more asymmetric and confined to ensure that quantum correlations cause an enhancement in the power output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.