Abstract

Colloidal semiconductor nanocrystals (NCs) have attracted a great deal of attention in recent decades. The quantum efficiency of many optoelectronic processes based on these nanomaterials, however, declines with increasing optical or electrical excitation intensity. This issue is caused by Auger recombination of multiple excitons, which converts the NC energy into excess heat, whereby reducing the efficiency and lifespan of NC-based devices, including lasers, photodetectors, X-ray scintillators, and high-brightness LEDs. Recently, semiconductor quantum shells (QSs) have emerged as a viable nanoscale architecture for the suppression of Auger decay. The spherical-shell geometry of these nanostructures leads to a significant reduction of Auger decay rates, while exhibiting a near unity photoluminescence quantum yield. Here, we compare the optoelectronic properties of quantum shells against other low-dimensional semiconductors and discuss their emerging opportunities in solid-state lighting and energy-harvesting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call