Abstract

In this paper, we study set theory based on quantum logic. By quantum logic, we mean the lattice of all closed linear subspaces of a Hilbert space. Since quantum logic is an intrinsic logic, i.e. the logic of the quantum world, (cf. 1) it is an important problem to develop mathematics based on quantum logic, more specifically set theory based on quantum logic. It is also a challenging problem for logicians since quantum logic is drastically different from the classical logic or the intuitionistic logic and consequently mathematics based on quantum logic is extremely difficult. On the other hand, mathematics based on quantum logic has a very rich mathematical content. This is clearly shown by the fact that there are many complete Boolean algebras inside quantum logic. For each complete Boolean algebra B, mathematics based on B has been shown by our work on Boolean valued analysis 4, 5, 6 to have rich mathematical meaning. Since mathematics based on B can be considered as a sub-theory of mathematics based on quantum logic, there is no doubt about the fact that mathematics based on quantum logic is very rich. The situation seems to be the following. Mathematics based on quantum logic is too gigantic to see through clearly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.