Abstract
We present a systematic study of quantum sensing of ultralow temperature in biwire ultracold polar molecules of a quasi-one-dimensional (1D) trap by exploring the dynamics of two physically different qubit models. The two models consist of a trapped impurity atom that act as a temperature quantum sensor interacting with polar molecules reservoir, where dipole moments are aligned head-to-tail across the wires. Our model takes advantage of the adjustable interwire distance to accurately control the precision ultralow temperatures measurement. We show that the system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing the interwire separation, the dipole-–dipole interaction (DDI), and the temperature. We characterize the thermometric performance using the quantum signal-to-noise ratio for both models and demonstrate that such a quantity exhibits a higher peak at ultralow temperature. We therefore emphasize that ultracold polar molecules are crucial for revolutionizing temperature sensing. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.