Abstract

In quantum secure multi-party summation protocols, some attackers can impersonate legitimate participants in the summation process, and easily steal the summation results from the participants. This is often overlooked for existing secure multi-party summation protocols, thus rendering them insecure. Based on commutative encryption, a quantum secure multi-party summation protocol with identity authentication is proposed in this paper. In the protocol, each participant encodes a secret integer on photons via unitary operations. At the same time, a one-way hash function technique with a key is utilized to perform identity authentication operations for each participant. Finally, the summation is calculated with the help of a semi-trusted third party. The analysis of the protocol shows that the proposed protocol is correct and resistant to common and impersonation attacks. Compared to related protocols, the use and measurement of single photons makes the protocol easier to implement into existing technology. Furthermore, the simulation experiments on the IBM Q Experience cloud platform demonstrate the effectiveness of the presented protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.