Abstract

The development of quantum theory was an archetypal scientific revolution in early twentieth-century physics. In many ways, the probabilities and uncertainties that replaced the ubiquitous application of classical mechanics may have seemed a violent assault on logic and reason. 'Something unknown is doing we don't know what–that is what our theory amounts to,' Sir Arthur Eddington famously remarked, adding, 'It does not sound a particularly illuminating theory. I have read something like it elsewhere: the slithy toves, did gyre and gimble in the wabe' [1]. Today, quantum mechanics no longer seems a dark art best confined to the boundaries of physics and philosophy. Scanning probe micrographs have captured actual images of quantum-mechanical interference patterns [2], and familiarity has made the claims of quantum theory more palatable. An understanding of quantum effects is essential for nanoscale science and technology research. This special issue on quantum science and technology at the nanoscale collates some of the latest research that is extending the boundaries of our knowledge and understanding in the field.Quantum phenomena have become particularly significant in attempts to further reduce the size of electronic devices, the trend widely referred to as Moore's law. In this issue, researchers in Switzerland report results from transport studies on graphene. The researchers investigate the conductance variance in systems with superconducting contacts [3]. Also in this issue, researchers in Germany calculate the effects of spin–orbit coupling in a molecular dimer and predict nonlinear transport. They also explain how ferromagnetic electrodes can be used to probe these interactions [4]. Our understanding of spin and the ability to manipulate it has advanced greatly since the notion of spin was first proposed. However, it remains the case that little is known about local coherent fluctuations of spin polarizations, the scale on which they occur, how they are correlated, and how they influence spin currents and their fluctuations, as well as the mechanisms behind current-induced spin polarizations in chaotic ballistic systems. In a theoretical report on current-induced spin polarization from the University of Arizona, progress is made in filling in some of these gaps, and a 'spin–probe' model is proposed [5]. Spin is also an important element in quantum information research. With electron spin coherence lifetimes exceeding 1 ms at room temperature, as well as the added benefit of being optically addressable, nitrogen-vacancy defects in diamond have been identified as having considerable potential for quantum information applications. Now researchers in the US describe the fabrication and low-temperature characterization of silica microdisk cavities coupled to diamond nanoparticles, and present theoretical and experimental studies of gallium phosphide structures coupled to nitrogen-vacancy centers in bulk diamond [6]. Double quantum dots have been considered as prospective candidates for charge qubits for quantum information processors. The application of a bias voltage can be used to control tunnelling between the double quantum dots, allowing the energy states to be tuned. Researchers in Switzerland investigate experimentally the effect of ohmic heating of the phonon bath on decoherence, and find that the system can be considered as a thermoelectric generator [7].This progress has only been made possible by advances in our understanding of the fundamental science behind quantum mechanics, and work exploring this territory is still a hotbed of activity and progress. Increasingly sophisticated tools, both numerical and experimental, have facilitated engagement with quantum phenomena in nanoscale systems. Molecular spin clusters represent an ideal setting within solid-state systems to test concepts in quantum mechanics, as highlighted in this issue by researchers in Italy, who report their work on controlling entanglement between molecular spins [8]. Nanofabrication techniques have seen tremendous advances that have enabled scientists to realise new experimental electronics architectures. Using photolithography, chemical etching and electrodeposition, a collaboration of researchers in China, France and the US has fabricated mechanically controllable break junctions with finely adjustable nanogaps between two gold electrodes on solid state chips [9]. The structures can be used to characterize the electron transport properties of single molecules. In many ways, experimental realization of quantum phenomena has invigorated theoretical endeavours; experiments on the Kondo effect, for example, have renewed interest in finding new approximate solutions for the single impurity Anderson model. Researchers in Brazil present work on finding solutions to the Anderson Hamiltonian based on the atomic approach, which is simple to implement and has a low computational cost [10]. Theoretical descriptions have developed into powerful and sophisticated tools for explaining, understanding and even predicting the behaviour of quantum systems. Recent progress in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires is provided in a topical review by researchers in Germany [11].While a claim to a complete understanding of quantum phenomena may be premature, certainly vast progress has been made in learning how to navigate new territory in the quantum world. And what is more, in exploring novel systems and the continued efforts to develop devices with capabilities enhanced due to quantum effects, we are learning to exploit it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call