Abstract

We consider a collision between a moving particle and a fixed system, each having internal degrees of freedom. We identify the regime where the motion of the particle acts as a work source for the joint internal system, leading to energy changes which preserve the entropy. This regime arises when the particle has high kinetic energy and its quantum state of motion is broad in momentum and narrow in space, whether pure or mixed. In this case, the scattering map ruling the dynamics of the internal degrees of freedom becomes unitary and equivalent to that of a time-dependent interaction between the internal degrees of freedom of the colliding systems. It follows that the kinetic energy lost by the particle during the autonomous quantum collision coincides with the work performed by the time-dependent interaction. Recently, collisions with particles were shown to act as heat sources under suitable conditions; here we show that they can also act as work sources. This opens interesting perspectives for quantum thermodynamics formulations within scattering theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.