Abstract

Abstract The theory of quantum critical phenomena is introduced to study some current many-body problems in condensed matter physics. Renormalization group concepts are applied to strongly correlated electronic materials which are close to a zero-temperature instability. These systems have enhanced effective masses and susceptibility. Scaling arguments yield the exponents which govern the critical behavior of these quantities in terms of the usual critical exponents associated with a zero-temperature phase transition. We show the existence of a new energy scale, related to the quantum nature of the many-body instability, which can be generally associated with the setting of Fermi-liquid behavior with decreasing temperature in three-dimensional strongly interacting electronic systems. The theory of quantum critical phenomena is used to investigate the Kondo lattice problem, which provides a model to describe heavy-fermion systems and to introduce a scaling theory of the Mott transition with special emphasis on charge fluctuation effects. However, this report is not a review on heavy fermions and Mott insulators. The microscopic theories of these systems are still controversial and present some of the most challenging and instigating problems in condensed matter physics. This state of affairs stimulated the author to review and extend the scaling approach. The scaling theory we develop provides a powerful tool, based on the notion of universality, to understand the physical properties of correlated systems beyond the mean-field level. This is illustrated by our treatment of the one-dimensional Hubbard model, where, although the Fermi-liquid fixed point does not survive the fluctuations, the scaling approach is still useful. Finally, we discuss briefly how disorder affect our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.