Abstract

In echo experiments, imperfect time-reversal operations are performed on a subset of the total number of degrees of freedom. To capture the physics of these experiments, we introduce a partial fidelity M(B)(t), the Boltzmann echo, where only part of the system's degrees of freedom can be time reversed. We present a semiclassical calculation of M(B)(t). We show that, as the time-reversal operation is performed more and more accurately, the decay rate of M(B)(t) saturates at a value given by the decoherence rate of the controlled degrees of freedom due to their coupling to uncontrolled ones. We connect these results with NMR spin echo experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.