Abstract
Classical ratchets have been recently successfully realized using cold atoms in driven optical lattices. Here we study the current rectification of the motion of a quantum particle in a periodic potential exposed to an external ac field. The dc current appears due to the desymmetrization of Floquet eigenstates, which become transporting. Quantum dynamics enhances the dependence of the current on the initial phase of the driving field. By changing the laser field parameters which control the degree of space-time asymmetry, Floquet eigenstates are tuned through avoided crossings. These quantum resonances induce resonant changes of the resulting current. The width, strength and position of these quantum resonances are tunable using control parameters of the experimental realization with cold atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.